
CS145 Fall 2023 – Midterm Solution

Name: Section: A / B

Student ID Number:

Date: Start time: End time:

Honor Code:

Signature:

This exam is closed book, closed notes, closed computer, closed calculator, etc. You may only use (1)
the midterm “cheat sheet” provided with this exam and (2) a single double-sided letter sheet of notes of
your own creation. You have 2 hours. Read the problem descriptions carefully and write your answers
clearly, legibly, in the space provided. Circle or otherwise indicate your answer if it might not be easily
identified. You may use extra sheets of paper, stapled to your exam, if you need more room, as long as the
problem number is clearly labeled and your name is on the paper. If you attached extra sheets indicate in
the provided space for the problem to look for the extra sheets for that problem.
You do need to include module imports (if relevant for your code), but do not need to include
comments or docstrings in your code.

Question Points Score

Loop Warm-Up 20

True or False 30

Function Calls 15

Email Validation 45

Debugging, Testing, and Documentation 25

Shapes and Turtles 15

Total: 150

1

Page 2 of 12

Question 1: Loop Warm-Up [20 points]
Write two loops that print every other character in a string s, starting with the character at index 0.
For example, if s = "otter", the output should be:

o

t

r

One should be a for loop using range, and the other should be a while loop.

(a) for loop

Solution:

for i in range(len(s)):

if i % 2 == 0:

print(s[i])

or

for i in range(0, len(s), 2):

print(s[i])

(b) while loop

Solution:

i = 0

while i < len(s):

print(s[i])

i += 2

Page 3 of 12

Question 2: True or False [30 points]
For each of the statements below state whether they are T (true) or F (false).

(a) T The expression (5 + 7) % 2 == 0 or x always evaluates to True, regardless of the value
of x (as long as x is defined)

(b) F All recursive functions must include a return statement

(c) T The binary search algorithm makes the assumption that the input list is sorted

(d) F for loops can always do the same thing as while loops with less code

(e) T The following loop is infinite

count = 0

while count != 10:

print("Does it stop?")

count += 3

(f) F If there is an elif in your function, there must be an else

(g) F The base case of a recursive function should always return an empty string if the input to
the function is a string

(h) F There is an input to the function below that will cause it to print both "bananas" and
"oranges"

def mystery(arg):

if arg > 20:

print("bananas")

elif arg > 10:

print("oranges")

else:

print("grapefruit")

(i) T If you ran this code in Thonny, 20 would be printed

x = 20

if x % 5 == 0:

print(x)

else:

print("nope")

x = y

Page 4 of 12

(j) T y and z have the same value after executing this code:

def mystery(arg):

for x in arg:

if x == "c":

return True

return False

z = mystery("according")

y = mystery(["c", "a", "t"])

NOTE: Due to a syntax error in this question (now fixed), everyone got credit.

Question 3: Function Calls [15 points]
Consider the following Python code:

def bar(x, z):

if z > x:

return z

return 0

def foo(l):

y = 0

for i in range(len(l)):

y += bar(i, l[i])

return y

z = foo([4, 1, 3, 9])

After execution the value of z is:

3. 16

For partial credit (in case your answer above is incorrect), fill out the table below with the calls that
will be made to the bar function in order, and the values that are returned. The first function call is
given to you as an example. There may be extra spaces in the table that you do not need.

Order Function Call Returns

1st call to bar bar(0, 4) 4

2nd call to bar bar(1, 1) 0

3rd call to bar bar(2, 3) 3

4th call to bar bar(3, 9) 9

5th call to bar

6th call to bar

7th call to bar

8th call to bar

Page 5 of 12

Question 4: Email Validation [45 points]
For this question, you will write functions that help you to get a valid Middlebury email address from a
user.

(a) (15 points) endswith function

Write a function that determines whether a string s1 ends with another string s2. You may
assume that s1 is at least as long as s2. Here are some example function calls and outputs:

Function Call Returns
endswith("username@middlebury.edu", "@middlebury.edu") True

endswith("username@gmail.com", "@middlebury.edu") False

endswith("horse", "e") True

HINT: this function does not require a loop, and can be written succinctly using string slicing,
boolean operators, and built-in functions. You may not use the string endswith method (which
we have not discussed in class).

Full credit will be given to concise answers written using two lines.

Solution:

def endswith(s1, s2):

return s1[len(s1) - len(s2):] == s2

NOTE: Answers that only work if s2 was not an empty string were also accepted.

Page 6 of 12

(b) (15 points) has spaces function

Next, write a recursive has spaces function that determines a string has any spaces in it.

Here are some example function calls and outputs:

Function Call Returns
has spaces("tswift") False

has spaces("paul mccartney") True

has spaces("beyonce") False

You can use the is space function written below to determine whether or not a character is a space
(spaces and empty strings may look similar when handwritten).

def is_space(char):

return char == " "

Solution:

def has_spaces(s):

if len(s) == 0:

return False

elif is_space(s[0]):

return True

else:

return has_spaces(s[1:])

Page 7 of 12

(c) (15 points) get email function

Finally, we’ll put the pieces together to write a function that gets input from a user and returns
it only after checking that they have written a valid middlebury email address. If the email is not
valid, it will ask for their email again. For the sake of this problem, a valid email address must end
with @middlebury.edu and must have no spaces (that means that simply "@middlebury.edu" is
technically valid). Write the function by re-organizing the lines that are provided here (you must
use all lines). Use the table below: input the line number in the first column to order the lines,
then indicate the indentation level by writing at least the first two characters of each line using the
grey lines as guidelines for the size of a tab. Any correct solution will be accepted.

NOTE: the use of while True here means that we will keep executing the body of the loop until
we return a value.

1 return user_email

2 def get_email():

3 user_email = input("Email: ")

4 domain = "@middlebury.edu"

5 if endswith(user_email, domain) and not has_spaces(user_email):

6 while True:

Solution:

Line # Line text (at least first character)
2 def get email():

4 domain = "@middlebury.edu"

6 while True:

3 user email = input("Email: ")

5 if endswith(user email, domain) and not has spaces(user email):

1 return user email

Page 8 of 12

Question 5: Debugging, Testing, and Documentation [25 points]
The questions on debugging, testing, and documentation will refer to the following function. The function
should return the largest number in a list with at least one number in it, but it has three
errors in it.

1 def largest_number(numbers):

2 curr_largest = 0

3 for num in numbers

4 if num > curr_largest:

5 curr_largest = number

6 return curr_largest

(a) There are 3 problems with this code, including: i) one syntax error, ii) one runtime error (syntac-
tically valid Python that generates an error when actually executed) and iii) one logic error (the
code would execute to completion if the other errors are fixed but produces incorrect results). For
this question, you will identify and describe all three errors in the code. The errors should not be
variations of the same issue and should impact correctness, not just style. You do not need to fix
the errors.

i. (5 points) Syntax Error
Write the line number of the syntax error on the line:

i. 3

Write a description of the syntax error here:

Solution:
Line 3 should contain a colon at the end, but it is missing

ii. (5 points) Runtime Error
Write the line number of the runtime error on the line:

ii. 5

Write a description of the runtime error here:

Solution:
The wrong variable name is used (number instead of num).

iii. (5 points) Logic Error
Fill in the function call below as if you are using it to test the function. Your function call
must reveal the logic error in the code. In other words, the returned value should be
incorrect for this test case.

largest_number([-1, -2, -4])

Write a description of the logic error here:

Solution:
By making curr largest 0, we ignore the possibility of a negative number being the largest
number in a list.

Page 9 of 12

(b) (3 points) We talked about three basic patterns when dealing with lists: map, reduce, and filter.
Which type of function is this? Select one answer only, and assume that all of the errors you
identified have been fixed.

⃝ map

⃝ filter
√

reduce

(c) (7 points) Write an appropriate docstring for the function. Assume that all of the errors you
identified have been fixed. Your docstring should include:

• A short sentence describing what the function does in simple terms.

• A description of the data type(s) that the argument numbers should have in order for the
function to work.

• A description of the return value of the function, including its data type.

Solution:

"""

Returns the largest number in a list of numbers with length >= 1

Arguments:

numbers (List[int/float]): a list of numbers

Assumptions: there's at least one number in the list

Returns:

int/float: the largest number in the list

"""

Page 10 of 12

Question 6: Shapes and Turtles [15 points]
We used the turtle module in Lab 4 to draw pictures in Python. Draw the picture that is created by
running this code:

import turtle

def f(length_pixels):

if length_pixels > 1:

for i in range(4):

turtle.forward(length_pixels)

turtle.left(90)

f(length_pixels - 2)

f(10)

Assume that the turtle starts at the spot shown in the grid provided below, facing right, at the rightmost
tip of the shape. Treat every square on the grid as 1 pixel.

Sequence Containers Indexing

Base Types

Python 3 Cheat Sheet©2012-2015 - Laurent Pointal
License Creative Commons Attribution 4

Latest version on :
https://perso.limsi.fr/pointal/python:memento

0783 -192int

9.23 -1.7e-60.0float
True Falsebool
"One\nTwo"

'I\'m'

str
"""X\tY\tZ
1\t2\t3"""

×10-6

escaped tab

escaped new line
Multiline string:

Container Types
list [1,5,9] ["x",11,8.9] ["mot"] []

tuple (1,5,9) 11,"y",7.4 ("mot",) ()

dict
{1:"one",3:"three",2:"two",3.14:"π"}

{"key":"value"}

set

{}

{1,9,3,0}

◾ ordered sequences, fast index access, repeatable values

set()

◾ key containers, no a priori order, fast key access, each key is unique

{"key1","key2"}

Non modifiable values (immutables)

Variables assignment

x=1.2+8+sin(y)

y,z,r=9.2,-7.6,0

a…zA…Z_ followed by a…zA…Z_0…9
◽ diacritics allowed but should be avoided
◽ language keywords forbidden
◽ lower/UPPER case discrimination

☝ expression with only comas →tuple

dictionary

collection

integer, float, boolean, string, bytes

Identifiers

☺ a toto x7 y_max BigOne
☹ 8y and for

x+=3
x-=2

increment ⇔ x=x+3
decrement ⇔ x=x-2

Conversions

for lists, tuples, strings, bytes…

int("15") → 15
int("3f",16) → 63 can specify integer number base in 2nd parameter
int(15.56) → 15 truncate decimal part
float("-11.24e8") → -1124000000.0
round(15.56,1)→ 15.6 rounding to 1 decimal (0 decimal → integer number)
bool(x) False for null x, empty container x , None or False x ; True for other x
str(x)→ "…" representation string of x for display (cf. formatting on the back)
chr(64)→'@' ord('@')→64 code ↔ char
repr(x)→ "…" literal representation string of x
bytes([72,9,64]) → b'H\t@'
list("abc") → ['a','b','c']
dict([(3,"three"),(1,"one")]) → {1:'one',3:'three'}
set(["one","two"]) → {'one','two'}
separator str and sequence of str → assembled str

':'.join(['toto','12','pswd']) → 'toto:12:pswd'
str splitted on whitespaces → list of str

"words with spaces".split() → ['words','with','spaces']
str splitted on separator str → list of str

"1,4,8,2".split(",") → ['1','4','8','2']
sequence of one type → list of another type (via list comprehension)

[int(x) for x in ('1','29','-3')] → [1,29,-3]

type(expression)

lst=[10, 20, 30, 40, 50]
lst[1]→20
lst[-2]→40

0 1 2 3 4
-5 -4 -3 -1-2 Individual access to items via lst[index]

positive index
negative index

0 1 2 3 54

-5 -4 -3 -1-2negative slice
positive slice

Access to sub-sequences via lst[start slice:end slice:step]

len(lst)→5

lst[1:3]→[20,30]

lst[::2]→[10,30,50]
lst[-3:-1]→[30,40]

lst[:3]→[10,20,30]lst[:-1]→[10,20,30,40]
lst[3:]→[40,50]lst[1:-1]→[20,30,40]

lst[:]→[10,20,30,40,50]
Missing slice indication → from start / up to end.
On mutable sequences (list), remove with del lst[3:5] and modify with assignment lst[1:4]=[15,25]

Conditional Statement

if age<=18:
 state="Kid"
elif age>65:
 state="Retired"
else:
 state="Active"

Boolean Logic Statements Blocks

parent statement:
 statement block 1…
 ⁝
 parent statement:
 statement block2…
 ⁝

next statement after block 1

in
de

nt
at

io
n

!

Comparisons : < > <= >= == !=≠=≥≤
a and b

a or b

not a

logical and

logical or

logical not

one or other
or both

both simulta-
-neously

if logical condition:
 statements block

statement block executed only
if a condition is true

Can go with several elif, elif... and only one
final else. Only the block of first true
condition is executed.

lst[-1]→50
lst[0]→10

⇒ last one
⇒ first one

x=None « undefined » constant value

Maths
Operators: + - * / // % **

× ÷
integer ÷ ÷ remainder

ab
from math import sin,pi…
sin(pi/4)→0.707…
cos(2*pi/3)→-0.4999…
sqrt(81)→9.0 √
log(e**2)→2.0
ceil(12.5)→13
floor(12.5)→12

escaped '

☝ floating numbers… approximated values angles in radians

(1+5.3)*2→12.6
abs(-3.2)→3.2
round(3.57,1)→3.6
pow(4,3)→64.0

for variables, functions,
modules, classes… names

Mémento v2.0.6

str (ordered sequences of chars / bytes)

(key/value associations)

☝ pitfall : and and or return value of a or
of b (under shortcut evaluation).
⇒ ensure that a and b are booleans.

(boolean results)

a=b=c=0 assignment to same value
multiple assignments

a,b=b,a values swap
a,*b=seq
*a,b=seq

unpacking of sequence in
item and list

bytes

bytes

b"toto\xfe\775"

hexadecimal octal

0b010 0xF30o642
binary octal hexa

""

empty

dict(a=3,b=4,k="v")

Items count

☝ keys=hashable values (base types, immutables…)

True
False True and False constants ☝ configure editor to insert 4 spaces in

place of an indentation tab.

lst[::-1]→[50,40,30,20,10]
lst[::-2]→[50,30,10]

1) evaluation of right side expression value
2) assignment in order with left side names

=
☝ assignment ⇔ binding of a name with a value

☝ immutables

On mutable sequences (list), remove with
del lst[3] and modify with assignment
lst[4]=25

del x remove name x

b""

@ → matrix × python3.5+numpy

☝ index from 0
(here from 0 to 4)

frozenset immutable set

Priority (…)

☝ usual order of operations
modules math, statistics, random,

 decimal, fractions, numpy, etc. (cf. doc)

Modules/Names Imports
from monmod import nom1,nom2 as fct
module truc⇔file truc.py

→direct access to names, renaming with as
import monmod →access via monmod.nom1 …

☝ modules and packages searched in python path (cf sys.path)

?
yes

no

shallow copy of sequence

?
yes no

and
*=
/=
%=
…

☝ with a var x:
if bool(x)==True: ⇔ if x:
if bool(x)==False:⇔ if not x:

raise ExcClass(…)
Signaling an error:

Errors processing:
try:
 normal procesising block
except Exception as e:
 error processing block

normal

processing

error
processing

error
processing

raiseraise X()

zero

☝ finally block for final processing
in all cases.

Exceptions on Errors

"modele{} {} {}".format(x,y,r)

"{selection:formatting!conversion}"
◽ Selection :
 2
 nom
 0.nom
 4[key]
 0[2]

str

Displayprint("v=",3,"cm :",x,",",y+4)

print options:
◽ sep=" " items separator, default space
◽ end="\n" end of print, default new line
◽ file=sys.stdout print to file, default standard output

items to display : literal values, variables, expressions

loop on dict/set ⇔ loop on keys sequences
use slices to loop on a subset of a sequence

Conditional Loop Statementstatements block executed as long as
condition is true

while logical condition:
 statements block

s = 0
i = 1

while i <= 100:
 s = s + i**2
 i = i + 1
print("sum:",s)

initializations before the loop
condition with a least one variable value (here i)

s= ∑
i=1

i=100

i2☝ make condition variable change !

statements block executed for each
item of a container or iterator

for var in sequence:
 statements block

s = "Some text"
cnt = 0

for c in s:
 if c == "e":
 cnt = cnt + 1
print("found",cnt,"'e'")

Go over sequence's values

Algo: count
number of e
in the string.

Go over sequence's index
◽ modify item at index
◽ access items around index (before / after)
lst = [11,18,9,12,23,4,17]
lost = []
for idx in range(len(lst)):
 val = lst[idx]
 if val > 15:
 lost.append(val)
 lst[idx] = 15
print("modif:",lst,"-lost:",lost)

Algo: limit values greater
than 15, memorizing
of lost values.

☝
be

w
ar

e
of

 in
fin

ite
 lo

op
s!

initializations before the loop

loop variable, assignment managed by for statement

values to formatformating directives

Integer Sequences

Files

s = input("Instructions:")
☝ input always returns a string, convert it to required type

(cf. boxed Conversions on the other side).

range(5)→ 0 1 2 3 4 range(2,12,3)→ 2 5 8 11
range(3,8)→ 3 4 5 6 7 range(20,5,-5)→ 20 15 10
range(len(seq))→ sequence of index of values in seq
 ☝ range provides an immutable sequence of int constructed as needed

range([start,] end [,step])

f = open("file.txt","w",encoding="utf8")
storing data on disk, and reading it back

opening mode
◽ 'r' read
◽ 'w' write
◽ 'a' append
◽ …'+' 'x' 'b' 't'

encoding of
chars for text
files:
utf8 ascii
latin1 …

name of file
on disk
(+path…)

file variable
for operations

f.write("coucou")
f.writelines(list of lines)

writing reading
f.read([n]) → next chars

if n not specified, read up to end !
f.readlines([n]) → list of next lines
f.readline() → next line

with open(…) as f:
 for line in f :
 # processing ofline

cf. modules os, os.path and pathlib

f.close() ☝ dont forget to close the file after use !

Very common: opening with a guarded block
(automatic closing) and reading loop on lines
of a text file:

Function Definition

def fct(x,y,z):
 """documentation"""
 # statements block, res computation, etc.
 return res

function name (identifier)

result value of the call, if no computed
result to return: return None

☝ parameters and all
variables of this block exist only in the block and during the function
call (think of a “black box”)

named parameters

Function Callr = fct(3,i+2,2*i)

☝ read empty string if end of file

len(c)→ items count
min(c) max(c) sum(c)
sorted(c)→ list sorted copy
val in c → boolean, membership operator in (absence not in)
enumerate(c)→ iterator on (index, value)
zip(c1,c2…)→ iterator on tuples containing c

i
items at same index

all(c)→ True if all c items evaluated to true, else False
any(c)→ True if at least one item of c evaluated true, else False

☝ modify original list

lst.append(val) add item at end
lst.extend(seq) add sequence of items at end
lst.insert(idx,val) insert item at index
lst.remove(val) remove first item with value val
lst.pop([idx])→value remove & return item at index idx (default last)
lst.sort() lst.reverse() sort / reverse liste in place

"{:+2.3f}".format(45.72793)
→'+45.728'
"{1:>10s}".format(8,"toto")
→' toto'
"{x!r}".format(x="I'm")
→'"I\'m"'

☝ start default 0, end not included in sequence, step signed, default 1

◽ Conversion : s (readable text) or r (literal representation)

< > ^ = 0 at start for filling with 0
integer: b binary, c char, d decimal (default), o octal, x or X hexa…
float: e or E exponential, f or F fixed point, g or G appropriate (default),
string: s … % percent

◽ Formatting :
fill char alignment sign mini width.precision~maxwidth type

+ - space

Operations on Dictionaries Operations on Sets
Operators:
 | → union (vertical bar char)
 & → intersection
 - ^ → difference/symmetric diff.
 < <= > >= → inclusion relations
Operators also exist as methods.

d.update(d2) update/add
associations

Note: For dictionaries and sets, these
operations use keys.

Specific to ordered sequences containers (lists, tuples, strings, bytes…)
reversed(c)→ inversed iterator c*5→ duplicate c+c2→ concatenate
c.index(val)→ position c.count(val)→ events count

Operations on Lists

d[key]=value
d[key]→ value

d.keys()
d.values()
d.items()

d.clear()
del d[key]

→iterable views on
keys/values/associations

E
xa

m
pl

es

d.pop(key[,default])→ value
d.popitem()→ (key,value)
d.get(key[,default])→ value
d.setdefault(key[,default])→value

s.update(s2) s.copy()
s.add(key) s.remove(key)
s.discard(key) s.clear()
s.pop()

Loop Control

Go simultaneously over sequence's index and values:
for idx,val in enumerate(lst):

☝
go

od
 h

ab
it

: d
on

't
m

od
ify

 lo
op

 v
ar

ia
bl

e

Advanced: def fct(x,y,z,*args,a=3,b=5,**kwargs):
*args variable positional arguments (→tuple), default values,
**kwargs variable named arguments (→dict)

one argument per
parameter

storage/use of
returned value

Algo:

f.flush() write cache

f.tell()→position
reading/writing progress sequentially in the file, modifiable with:

f.seek(position[,origin])

f.truncate([size]) resize

Advanced:
*sequence
**dict

s.startswith(prefix[,start[,end]])
s.endswith(suffix[,start[,end]]) s.strip([chars])
s.count(sub[,start[,end]]) s.partition(sep)→ (before,sep,after)
s.index(sub[,start[,end]]) s.find(sub[,start[,end]])
s.is…() tests on chars categories (ex. s.isalpha())
s.upper() s.lower() s.title() s.swapcase()
s.casefold() s.capitalize() s.center([width,fill])
s.ljust([width,fill]) s.rjust([width,fill]) s.zfill([width])
s.encode(encoding) s.split([sep]) s.join(seq)

?
yes

no

next

finish
…

Input

import copy
copy.copy(c)→ shallow copy of container
copy.deepcopy(c)→ deep copy of container

☝ this is the use of function
name with parentheses
which does the call

fct()

fct

fct

☝ text mode t by default (read/write str), possible binary
mode b (read/write bytes). Convert from/to required type !

break immediate exit
continue next iteration

☝ else block for normal
loop exit.

Iterative Loop Statement

Operations on Strings

Formatting

Generic Operations on Containers

