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Language and Mental Health

2

• Linguistic patterns of depressed people have been studied using 
varied sources of data

• Some linguistic patterns are more prevalent in depressed people’s 
speech and writing

• Depressed people display self-focus (I-words) and use more negative emotion 
words (e.g., about anxiety and sadness)

• Many researchers have used social media data to build depression 
classifiers

• BIG challenge: high quality training data
Rude et al. (2004), Language use of depressed and depression-vulnerable college students
Rodriguez  et al. (2010), Reading between the lines: the lay assessment of subclinical depression from written self-descriptions
Eichstaedt et al. (2018), Facebook language predicts depression in medical records
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• We refer to a 
statement such as 
“I have been 
diagnosed with 
depression” as a 
self-report

• Self-report patterns 
are commonly used 
to collect diagnosis 
labels for social 
media users

• Their other posts 
are collected to 
train classifiers

I need help. A few years ago, I was 
diagnosed with depression, which is 

common in my family. Anti-depressants 
helped for a while, but I am no longer able to 

use them... I have begun to [description of 
self-harm] again, and I hate doing it but can't 

stop. I hate my job, and I have nobody to 
support me, especially not my family. I simply 
don't know what to do. Thank you for reading 

this...

3

Coppersmith et al. (2014), Quantifying Mental Health Signals in Twitter
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Ernala et al. (2019), Methodological Gaps in Predicting Mental Health States from Social Media: Triangulating Diagnostic Signals
Harrigian et al. (2020), Do Models of Mental Health Based on Social Media Data Generalize?

A person who has reported 
their mental health diagnosis 
on social media
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symptom onset seeking help formal diagnosis

Period considered in training data based on self-report
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be connected to 

support

Period in which a valid self-report 
could happen

time

Users who self-report 
were once in one of 
these stages



Experiments

In-Domain:
Does model performance drop when tested on pre-diagnosis data 
rather than data from all time periods?

Out-of Domain:
Do models generalize better to a population of users who have 
depression but don’t self-report when trained on pre-diagnosis data?
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9



Finding Diagnosis Dates

• Some self-report posts give a hint as to when the user was diagnosed 
with depression
• We can determine these dates with 2-week precision for 691 users

9



• Models
• Logistic regression - TF-IDF and LIWC features
• FastText
• MentalBERT

Modeling Setup

10



• Models
• Logistic regression - TF-IDF and LIWC features
• FastText
• MentalBERT

Modeling Setup

10



• Models
• Logistic regression - TF-IDF and LIWC features
• FastText
• MentalBERT

Modeling Setup

10

We focus on these for brevity – 
full results in the paper!
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All-Large Models Outperform Pre-Diagnosis 
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TFIDF: Pre-Diagnosis

All-Large Classifier Weights Reflect Mental 
Health Discussion

TFIDF: All-Large
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Content warning: explicit text related 
to suicide appears on the next slide
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Takeaways

• It is harder for models to classify data that comes from user’s pre-
diagnosis state

• Careful data selection can be used to create more generalizable 
linear models

• Model weights for pre-diagnosis models correspond more 
to symptoms while weights for ALL models correspond more 
to mental health discussion
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