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* Linguistic patterns of depressed people have been studied using
varied sources of data

* Some linguistic patterns are more prevalent in depressed people’s
speech and writing
e Depressed people display self-focus (I-words) and use more negative emotion
words (e.g., about anxiety and sadness)

* Many researchers have used social media data to build depression
classifiers

* BIG challenge: high quality training data

Rude et al. (2004), Language use of depressed and depression-vulnerable college students
Rodriguez et al. (2010), Reading between the lines: the lay assessment of subclinical depression from written self-descriptions
Eichstaedt et al. (2018), Facebook language predicts depression in medical records



| need help. A few years ago, | was

diagnosed with depression, which is
common in my family. Anti-depressants
helped for a while, but | am no longer able to
use them... | have begun to [description of
self-harm] again, and | hate doing it but can't
stop. | hate my job, and | have nobody to
support me, especially not my family. | simply
don't know what to do. Thank you for reading
this...

Coppersmith et al. (2014), Quantifying Mental Health Signals in Twitter
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* We refer to a
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“I have been
diagnosed with
depression” as a
self-report

 Self-report patterns
are commonly used
to collect diagnosis
labels for social
media users

* Their other posts
are collected to
train classifiers
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Period considered in training data based on self-report
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be connected to could happen
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time

symptom onset  seeking help formal diagnosis

Users who self-report
were once in one of
these stages
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In-Domain:

Does model performance drop when tested on pre-diagnosis data
rather than data from all time periods?

Out-of Domain:

Do models to a population of users who have
depression but don’t self-report when trained on pre-diagnosis data?
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Finding Diagnosis Dates

O AAN N

diagnosed with yesterday
PRON AUX VERB ADP NOUN NOUN

* Some self-report posts give a hint as to when the user was diagnosed
with depression

* We can determine these dates with 2-week precision for 691 users
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* Models
* Logistic regression - TF-IDF and LIWC features

* FastText
e MentalBERT

* Training Data Settings

 All-Large: all data from 20.5K users
* Pre-Diagnosis: data from before diagnosis for 691 users with diagnosis date
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All-Large Models Outperform Pre-Diagnosis
Models on In-Domain Data
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Pre-Diagnhosis Models are Competitive on
Out-of-Domain Data (Survey-Based)

Diagnosed-Depression Results Diagnosed-All Results
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The best results overall are with large language models with access to more data
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Pre-Diagnhosis Models are Competitive on
Out-of-Domain Data (Survey-Based)

Diagnosed-Depression Results Diagnosed-All Results
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With small models, Pre-Diagnosis models are competitive or better than All-Small
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All-Large Classitier Weights Reflect Mental
Health Discussion

Content warning: explicit text related

to suicide appears on the next slide
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All-Large Classitier Weights Reflect Mental
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* It is harder for models to classify data that comes from user’s pre-
diagnosis state

e Careful data selection can be used to create

* Model weights for pre-diagnosis models correspond more
to symptoms while weights for ALL models correspond more
to mental health discussion
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